
THE FUTURE OF CRYSTALLINE SILICON TECHNOLOGY IN THE U.S. DEPARTMENT OF ENERGY PROGRAM

U.S. DEPARTMENT OF ENERGY

Anthony F. Scolaro

• THE POTENTIAL ENERGY CONVERSION EFFICIENCY OF CRYSTALI INE SILICON SOLAR CELLS IS AMONG THE HIGHEST OF POTENTIAL EFFICIENCIES FOR ONE JUNCTION CELLS.

ORIGINAL PAGE IS

Five-Year Research Plan Goals for Crystalline Silicon

		1984		1985		1986		1987		1988
		FY 84	F	Y 85	FY	86	FY	87	FY	88
MATERIALS RESEARCH	SILICON MATERIALS				< \$	20/kg				
	ADVANCED SILICON SHEET							oive Generic wth Problems		
COLLECTOR RESEARCH	FLAT PLATE COLLECTORS								T.1	. Mod. 12% (\$70/m²)
		SI Cell 1 (1cm		\$1 Mod. 12% (\$100/m ²)		8i Cell 20% (1 cm²)		SI Mod. 14% (\$90/m²)	•	Mod. 15% (\$90/m²)
SYSTEMS RESEARCH	MODULE RELIABILITY	,,,,,,,,,,			777		777		7777	
		Complete 30-Yr Model	. Er	ofine T.F. ncapsulation equirements		mpiete vironmental sta		Verify CrystSi 30-Yr. Life	//// *	Assess Life of T.F. Modules

▲Program Mil3stone®

★Cost Milestones Assume Further Industrial Development and Scale-up, Efficiencies Are Mecsured at 28°C and AM 1.5.

Issues to Be Addressed: Silicon Materials

- DEVELOP A PRODUCT WITH ACCEPT SEE PURITY FROM A FLUIDIZED BED REACTOR
- COMMERCIALIZE FLUIDIZED BED REACTOR TECHNOLOGY
- TO BE COMPLETED IN FY 1985

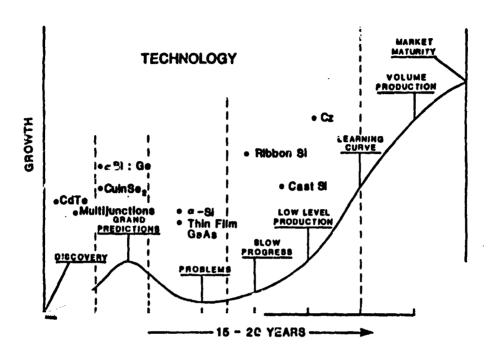
PLENARY SESSIONS

Issues to Be Addressed. Advanced Silicon Sheet

- DEVELOP BASIC UNDERSTANDING OF THE HIGH SPEED SILICON CRYSTALLIZATION
- CONTROL CRYSTALLIZATION TO DEVELOP HIGH PURITY/LOW DEFECT DENSITY MATERIAL
- DEVELOP THE TECHNOLOGY TO SENSE AND MITIGATE CHANGES IN THE GROWTH ENVIRONMENT, ENABLING LONG-TERM GROWTH
- TO BE COMPLETED IN FY 1986

Issues to Be Addressed: Flat-Plate Collectors

- UNDERSTAND DEVICE PARAMETER SENSITIVITIES, I.E. SURFACE AND BULK RECOMBINATION
- IDENTIFY AND DEVELOP PROCESSES TO OBTAIN THE DESIRED DEVICE PARAMETERS
- PERFORM RESEARCH TO DEMONSTRATE THAT HIGH EFFICIENCY CELL PROCESSES CAN BE COST-EFFECTIVE
- CONTINUING EFFORT


Issues to Be Addressed: Module Reliability

- MITIGATE THE EFFECTS OF ALREADY IDENTIFIED MODULE DEGRADATION MODES, 1.E.
 ELECTROCHEMICAL CORROSION, BOND DELAMINATION, PHOTOTHERMAL OXIDATION, ELECTRICAL INSULATION BREAKDOWN
- DEVELOP AN UNDERSTANDING OF AGING PROCESSES, INCLUDING SYNERGISTIC EFFECTS,
 TO ENABLE ACCELERATED TESTING
- TO BE COMPLETED IN FY 1987

PV Product Growth Stages

 THE SYGNIFICANT PROGRESS OF CRYSTALLINE SILICON TECHNOLOGY DEVELOPMENT ALONG THE PRODUCT GROWTH CURVE POSITIONS THE TECHNOLOGY TO BE A MAJOR CONTRIBUTOR TO PV TECHNOLOGY MARKET GROWTH.

Summary

- SILICON HAS A VERY HIGH POTENTIAL EFFICIENCY, DEMONSTRATED IMPROVEMENT IN RELIABILITY AND A SIGNIFICANT POTENTIAL FOR COST REDUCTIONS.
- HE PHOTOVOLTAIC TECHNOLOGY DEVELOPMENT PROCESS IS HIGHLY UNCERTAIN, BUT CRYSTALLINE SILICON TECHNOLOGY HAS A SUBSTANTIAL KNOWLEDGE BASE TO DRAW FROM, IMPROVING ITS CHANCES OF SUCCESS.